Sometimes when you are inspecting data, you come across duplicates that shouldn’t exist. Here’s a an easy way to remove duplicate rows using the ROW_NUMBER function. In a previous post about using ROW_NUMBER to find the latest record for each member in a group, I set up some sample data with this statement: CREATE TABLE metrics AS ( SELECT date, CASE WHEN n > random() * 2 and n < random() * 4 THEN ‘A’ WHEN n > random() * 2 and n < random() * 4 THEN ‘B’ WHEN n > random() * 4 and n < random() * 6 THEN ‘C’ WHEN n > random() * 6 and n < random() * 8 THEN ’D’ WHEN n > random() * 8 and n < random() * 10 THEN ‘E’ ELSE ‘F’ END as metric, round(random() * 1000) as value FROM generate_series(1,11,1) as n JOIN ( SELECT day + interval ‘1 day’ * round(random()*100) as date FROM generate_series(‘2019-01-01’, ‘2019-01-31’, interval ‘1 day’) day ) d ON true ); While that statement is a great way to get a bunch of random sample data to play with, there is no guarantee that the values or the dates will be unique.
quick-tip
In this post, we’re going to look at a techinque for finding the lastest full record for each member of a group. Now, it might not be obvious why this is an annoying problem, but I see people back into having this problem from two different directions. First, you know how to find the MAX date for each member in a group: metric | latest_metric ——–+———————— A | 2019-04-30 00:00:00-04 B | 2019-05-08 00:00:00-04 C | 2019-05-08 00:00:00-04 D | 2019-05-08 00:00:00-04 E | 2019-05-08 00:00:00-04 F | 2019-05-08 00:00:00-04 (6 rows) But you need additional column data from the same row as that most recent date.
Whenever you have two sets of data and you need to find the entries that are in your first set, but not in your second set, use this pattern. Let’s say you have an application that tracks user sign-ups separately for user sign-ins. You might be interested in knowing which users have signed up, but never signed in. Postgres makes it easy to mock up some sample data so we can work through this use case.
In this tip, we want to look at a concise way to shows changes in your data. I tend to think of this type of problem as a going from “finding” data to “describing” data. For example, if you know how to get every value for a user in the database for the last 30 days, then you can “find” data. When you calculate aggregates of that data using functions like MAX, MIN, SUM, or AVG, you are now “describing” the data.
When you are reporting on metrics over time, sometimes your data will have missing entries on certain days.
In these cases, it’s useful to be able to ensure that every date shows up in your report, regardless of whether or not there is a metric in the dataset for that date.
Let’s use daily user logins to a website for a reporting metric to illustrate how you solve this problem.
Usually, when you add an ORDER BY
clause to your SQL query, you want to sort by your columns’ values.
To track the top 10 cryptocurrencies by price over the last 90 days, for example, you would write a query like this: